Whole-transcriptome sequencing of epidermal mucus as a novel method for oil exposure assessment in juvenile mahi-mahi

Nicolette Andrzejczyk PhD Candidate at the University of California, Riverside

Justin Greer, Edward Mager, Martin Grosell, Daniel Schlenk

Southern California SETAC Annual Meeting Scripps Institute of Oceanography, UC San Diego May 6th, 2019

BACKGROUND

- The Deepwater Horizon disaster resulted in the release of over 600 million L of oil into the Gulf of Mexico between April 10 and July 14, 2010 (Crone & Tolstoy, 2010)
- Spill led to extensive oiling of the pelagic zone and fouling of shoreline habitats
- Oil spill coincided with the spawning times of many commercially important pelagic fish species, such as mahi-mahi (Rooker et al., 2012 & 2013)

CARDIOTOXICITY OF OIL DURING EMBROYNIC DEVELOPMENT

- Cardiotoxic phenotypes include:
 - pericardial edema
 - bradycardia and arrhythmias
 - contractility defects

 (Jung et al., 2013; Incardona et al., 2013; Incardona et al., 2014)
- Disruption of Ca²⁺ and K⁺ currents in cardiomyocytes is a major mechanism contributing to cardiotoxicity (Brette et al., 2014)

- Molecular Initiating Events include:
 - Modulation of genes involved in cardiac muscle function and Ca²⁺ homeostasis (casq2, ryr2, camk2g, etc.)
 - Upregulation of aryl hydrocarbon receptor (AhR) mediated genes (cyp1a1, cyp1b1, ugt1a1, ahrr, etc.)
 (Xu et al., 2016)`

MUCUS – THE FIRST LINE OF DEFENCE & POTENTIAL FOR BIOMARKERS

- Roles of epidermal mucus in fish include:
 - physical/biochemical barrier against environmental toxins and pathogens
 - osmoregulation
 - excretion
 - many others (Shepard, 1994; Reverter et al., 2018)

- Mucus composition is altered by a variety of stress conditions:
 - Vitellogenin protein used as a biomarker of exposure to endocrine disrupting compounds (Moncaut et al., 2003; Meucci and Aruwke, 2005; Van Veld et al., 2005)
 - Increased activity of oxidative stress enzymes following crude oil exposure (e.g. SOD, catalase, etc.) (Dzul-Caamal et al., 2016)
 - Immune-related gene expression altered following bacterial challenge (Liu et al, 2013; Ren et al., 2015)

Dynamic regulation of molecules in mucus following stress presents opportunity for development of noninvasive biomarkers of exposure

STUDY OBJECTIVE

Use RNA sequencing to examine the efficacy of mRNA-based analysis of mucus as a noninvasive method for oil-exposure detection in fish.

METHODS – EXPERIMENTAL DESIGN

Juvenile mahi-mahi exposed to high-energy water-accommodated fractions (HEWAF) of *Deepwater Horizon* slick oil for 48 hours:

4 replicates per treatment, with 4 individuals per replicate

Mucus collection from skin

Mucus pooled from each individual per replicate, for a total of 4 samples per treatment

Mucus collection technique on lake trout

SEQUENCING METHODS

Ingenuity[®] Pathway Analysis

INGENUITY® PATHWAY ANALYSIS

- Software from QIAGEN Bioinformatics that uses differential gene expression data to identify biological mechanisms, pathways, and functions that are predicted to be altered based on primary, peer-reviewed literature.
- Interpretation of the biological meaning of our sequencing results and formation of *in silico* adverse outcome pathways

Prediction of adverse phenotypes based on differential gene expression

e.g. Differentially expressed genes in *DWH* oil-exposed mahi-mahi are linked to degeneration of the eye (Xu et al., 2016)

RESULTS – WATER CHEMISTRY

- Measured 50 polycyclic aromatic hydrocarbon (PAH) analytes in exposure HEWAF samples
- Mean Σ PAH Concentrations:

<u>Control</u>: 0 μg/L <u>Low Oil (5% HEWAF)</u>: 16.55 μg/L <u>High Oil (10% HEWAF)</u>: 23.03 μg/L

• 3-ring PAHs predominated (~70% of the total PAHs), such as phenanthrenes and anthracenes

Phenanthrene

RESULTS – HIERARCHICAL CLUSTERING HEATMAP

- Able to distinguish exposed and non-exposed individuals based on transcriptome-wide gene expression patterns
- Suggests transcriptomic differences among treatments and, thus, dynamic regulation of mRNA in mucus following oil-exposure

RESULTS – DIFFERENTIAL GENE EXPRESSION

• Significant differentially expressed transcript (FDR-adjusted $p \le 0.05$)

RESULTS – DIFFERENTIAL GENE EXPRESSION

Immune-related

Rank	Gene Symbol	Gene Name	log2 Fold Change	p-value	Gene Ontology Functions and Processes
1	cyp1a1	cytochrome P450 family 1 subfamily A member 1	4.102	3.29E-29	oxidoreductase activity, aromatase activity
4	cyp1b1	cytochrome P450 family 1 subfamily B member 1	2.460	1.90E-17	oxidoreductase activity, aromatase activity
13	socs3	suppressor of cytokine signaling 3	-1.520	3.49E-09	cytokine-mediated signaling pathway, JAK-STAT cascade
42	dsg2	desmoglein 2	2.627	2.51E-05	calcium ion & cell adhesive protein binding involved in myocyte communication
45	cdh2	cadherin 2	2.778	5.66E-05	calcium ion binding and protein phosphatase binding
50	il24	interleukin 24	-2.494	9.13E-05	cytokine activity, immune & inflammatory response, wound healing
91	epas1	endothelial PAS domain protein 1	1.402	0.00341	response to hypoxia, angiogenesis, regulation of heart rate
95	cxcr1	C-X-C motif chemokine receptor 1	-1.817	0.00424	C-X-C chemokine receptor activity, chemotaxis
105	il5ra	interleukin 5 receptor subunit alpha	-2.064	0.00611	cytokine-mediated signaling pathway, interleukin-5 receptor activity
106	il17c	interleukin 17C	-2.553	0.00622	cytokine activity, interleukin-17-mediated signaling, inflammatory response
112	s100a11	S100 calcium binding protein A11	-1.434	0.00747	calcium ion binding and calcium-dependent protein binding
119	hbegf	heparin binding EGF like growth factor	-1.817	0.00822	cell chemotaxis, wound healing, regulation of heart contraction
124	ldlrap1	low density lipoprotein receptor adaptor protein 1	-0.834	0.01014	calcium ion binding, cholesterol metabolic process, lipid transport
127	edn1	endothelin 1	1.953	0.01048	cytokine activity, heart development, cellular response to hypoxia
133	glrx4	glutaredoxin 3	-3.515	0.01180	glutathione disulfide oxidoreductase activity, regulation of heart contraction
138	tnip2	TNFAIP3 interacting protein 2	-1.436	0.01661	I-kappaB kinase/NF-kappaB signaling, B cell/macrophage activation
156	ryr2	ryanodine receptor 2	1.157	0.02469	calcium ion binding, heart development, cardiac muscle contraction
159	postn	periostin	1.371	0.02521	response to hypoxia, cell adhesion, regulation of smooth muscle cell migration
160	cxcr3	C-X-C motif chemokine receptor 3	-1.078	0.02534	immune & inflammatory response, T cell chemotaxis, leukocyte migration
170	plcb1	phospholipase C beta 1	-1.165	0.03407	calcium ion binding, lipid catabolic process, interleukin-1-mediated signaling
197	nfkbia	NFKB inhibitor alpha	-0.997	0.04138	inflammatory response, regulation of NIK/NF-kappaB signaling

RESULTS – INGENUITY® PATHWAY ANALYSIS

Cardiac-related

Immune-related

• Top biological mechanisms, pathways, and functions that are predicted to be altered based on differential gene expression data

RESULTS – CARDIOTOXICITY AND CALCIUM HOMEOSTASIS

 Phenotypic outcomes predicted from mucus gene expression are reflective of cardiotoxic phenotypes previously observed in oil-exposed pelagic fish embryos

RESULTS – IMMUNOSUPPRESSION

- PAH-exposure is known to suppress immune system function in fish through downregulation of immune-related genes, increasing susceptibility to pathogen infection (Reynaud and Deschaux, 2006; Nakayama et al., 2008; Song et al., 2008; Bayha et al., 2017)
- Gene expression patterns in mucus are reflective of immunosuppressive effects observed in previous studies

CONCLUSIONS

- Consistency with other studies provides strong evidence that mucus is a promising vector for development of mRNA-based biomarkers of exposure
 - Transcriptional changes in cardiac and Ca²⁺ cycling genes in mucus were reflective of effects observed in oil-exposed pelagic fish embryo homogenates
 - Downregulation of immune-related genes in mucus is in-line with previous studies showing PAH-induced immunosuppression in fish
 - Upregulation of cyp1a1, a well-establish biomarker of PAH exposure
- Mucus sampling is nonlethal, making it ideal for exposure assessment of fish populations without further disruption through sampling

THANK YOU

This research was made possible by a grant from The Gulf of Mexico Research Initiative. Grant No: SA-1520; Name: Relationship of Effects of Cardiac Outcomes in fish for Validation of Ecological Risk (RECOVER).

Thank you SoCal SETAC for funding from the SoCal SETAC Graduate Student Research Award.

Contact Information: Nikki Andrzejczyk nandr009@ucr.edu